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We introduce perfect correlation vortices and show that the
degree of coherence of any such vortex at the source is nearly
statistically homogeneous and independent of the topologi-
cal charge of the vortex. We demonstrate that while slowly
diffracting in free space, perfect correlation vortices main-
tain their “perfect” vortex structure; they are capable of
preserving said structure even in strong atmospheric tur-
bulence. Structural resilience to diffraction and turbulence
sets the discovered perfect vortices apart from their coher-
ent cousins and makes them suitable for free-space optical
communications. © 2024 Optica Publishing Group. All rights,
including for text and data mining (TDM), Artificial Intelligence (AI)
training, and similar technologies, are reserved.

https://doi.org/10.1364/OL.529970

A coherent optical vortex (OV) features a helical phase with the
electromagnetic energy circulating around a vortex core which is
a line of zero field intensity and indeterminate (singular) phase
[1,2]. The discovery of a fundamental link between any opti-
cal vortex and its orbital angular momentum [3] has triggered
a flurry of research activity on OVs, culminating in numerous
applications thereof to optical communications [4,5], optical
trapping and tweezing [6,7], imaging [8], and even optical
computing [9].

The phase singularity positions (intensity nulls) of a typical
coherent OV strongly depend on the magnitude of the topo-
logical charge (TC) of the vortex [4,10]. However, the so-called
perfect vortex beams were introduced [11] and actively explored
[12,13] that alter this picture. The intensity profile of a realistic
perfect vortex forms a thin ring of a radius nearly independent
of the TC of the vortex [14]. Unfortunately, perfect vortices
embedded into coherent optical fields quickly lose their vortex
structure on free-space propagation.

At the same time, random optical fields endowed with OVs
have also been explored theoretically [15–17] and experimen-
tally [18–20]. As such partially coherent fields can carry OVs
associated with their two-point spatial correlations [15–17], the
term coherence vortices has been coined in Ref. [17]. Elec-
tromagnetic surface fields, such as random surface plasmon
polaritons, can also be structured to possess correlation vortices
[21]. In this context, reducing [22] or structuring [23] spatial

coherence at the source was proposed to mitigate extreme sus-
ceptibility of perfect vortices to diffraction. Such perfect vortices
wrapped into partially coherent fields remain intact over short
propagation distances, but quickly succumb to diffraction after-
ward. Thus, realizing prefect vortices that are resilient against
diffraction over any desired propagation distance remains an
open challenge.

In this Letter, we address this challenge by introducing a
class of perfect correlation vortices (PCVs) that maintain their
perfect vortex correlation rings on free-space propagation. As a
surprising bonus, the discovered PCVs are robust even against
very strong atmospheric turbulence over moderate distances. In
addition, the introduced PCVs are nearly immune to diffraction
and are virtually statistically homogeneous in the low-coherence
limit; their degree of coherence (DOC) is independent of the
TC. All these remarkable features testify to the potential of
such PCVs for free-space optical communications which we
will explore in due course.

We start our search for PCVs by considering random sources
endowed with OVs. The cross-spectral density of any bona
fide structured random source can be represented in the
form [24]

W0(r1, r2) =

∫
dk p(k)Ψ∗(r1, k)Ψ(r2, k). (1)

Let us take the nonnegative power spectrum p(k) to be a Gaussian

p(k) = p(k) ∝ e−k2σ2
c , k ≥ 0, (2)

and examine an infinite set of vortex carrying modes of the form

Ψ(r, k) = Ψ(k)
m (r) =

√
kJm(kr)e−r2/2w2

0 eimφ . (3)

Here Jm(x) is a Bessel function of the first kind and order m. It
follows from Eqs. (1) to (3) by inspection with the aid of the
table integral [25]∫ ∞

0
dxxJm(ax)Jm(bx)e−cx2

∝ exp
(︃
−

a2 + b2

4c

)︃
Im

(︃
ab
2c

)︃
, (4)
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Fig. 1. (a) Intensity distribution and (b) its evolution on free-
space propagation for PCVs of variable TC m. The parameters of
the source are w0 = 10 cm, σc = 1 mm, and λ0 = 532 nm.

that the source cross-spectral density can be expressed, up to an
irrelevant normalization constant, in a closed form as

W0(r1, r2) ∝ eim(φ2−φ1) exp
(︃
−

r2
1 + r2

2

2w2
0

)︃
× exp

(︃
−

r2
1 + r2

2

4σ2
c

)︃
Im

(︃
r1r2

2σ2
c

)︃
.

(5)

Here σc is related to the source coherence width as we will see
shortly, and w0 is a root mean square (rms) width of a Gaussian
envelope. Further, Im(x) is a modified Bessel function of order
m. We display the spatial intensity distribution I(r) = W(r, r) of
the source for variable m, which manifests intensity nulls on the
optical axis for any m ≠ 0, in Fig. 1(a). We choose the following
parameters: w0 = 10 cm, σc = 1 mm, and the carrier wavelength
λ0 = 532 nm. However, we are chiefly interested in the behavior
of the DOC of the just presented source; the latter is defined as
[26,27]

µ0(r1, r2) =
W0(r1, r2)√︁

W0(r1, r1)W0(r2, r2)
. (6)

It follows at once from Eqs. (5) and (6) that

µ0(r1, r2) = eim(φ2−φ1)
Im[r1r2/(2σ2

c )]√︁
Im[r2

1/(2σ2
c )]Im[r2

2/(2σ2
c )]

. (7)

The first glance at Eqs. (5) and (7) might lead to the conclusion
that the introduced sources are closely related to the previ-
ously reported [15] modified-Bessel-correlated ones. Indeed,
the cross-spectral densities and hence the degrees of coher-
ence of the two classes of sources have the same function
form. Yet, careful inspection reveals that in the low-coherence
regime, σc ≪ w0, the PCVs possess statistically homogeneous
correlations of a perfect vortex type, while the modified-
Bessel-correlated sources are statistically inhomogeneous in
any parameter regime. Mathematically, this fact is reflected in
very different representations of PCVs and modified-Bessel-
correlated sources in terms of Bessel and Laguerre–Gaussian
modes, respectively.

To demonstrate that the DOC of Eq. (7) describes a PCV, we
focus on a nearly incoherent limit, such that

σc ≪ σeff ≪ w0, σeff =
√
σcw0. (8)

Here σeff denotes a characteristic transverse spatial scale
governing PCV diffraction, as we will see shortly. Next,
introducing a dimensionless radial variable, r = r/σeff , we
can approximate Im(x) ≃ ex/

√
x in the incoherent limit (8). It

then readily follows from Eq. (7) that relative to any refer-
ence point r0, the source correlations are homogeneous, given

by

µ0(r, r0) ≃ eim(φ−φ0) exp
[︃
−
(r − r0)

2

4δ2
0

]︃
, (9)

where r0 = r0/σeff and δ0 =
√︁
σc/w0 ≪ 1 is a very narrow width

of source correlations in dimensionless variables; in other words,
the two-point correlations of the source field endowed with a
helical wavefront are only significant over a very narrow cir-
cular ring, regardless of the topological charge of the vortex.
Therefore, Eq. (9) describes a perfect correlation vortex. Note
that r in the

√
x factor in the asymptotic expansion of Im(x) can

be replaced with r0 because
√

x does not appreciably change over
the ring width compared to ex.

Next, we examine free-space evolution of PCVs. Using the
vortex modes of Eq. (3), we can write for the cross-spectral
density in any transverse plane, z = const ≥ 0,

W(r1, r2, z)=
∫ ∞

0
dke−k2σ2

cΨ
(k)∗
m (r1, z)Ψ(k)

m (r2, z), (10)

where the mode evolution is governed, in paraxial approxima-
tion, by the following Fresnel transform:

Ψ
(k)
m (r, z) =

(︃
k0

2πiz

)︃ ∫
dr′Ψ(k)

m (r′, 0) exp
[︃
ik0(r − r′)2

2z

]︃
. (11)

Here k0 = 2π/λ0. On substituting from Eqs. (3) and (11) into
(10), we obtain, after somewhat lengthy algebra employing the
integral (4), for the cross-spectral density the expression

W(r1, r2, z) ∝
eim(φ2−φ1)

(1 + z2/L2
d)

exp
[︃

i(r2
2 − r2

1)

2(σ2
c LR/z + w2

0z/LR)

]︃
× exp

[︃
−

(r2
1 + r2

2)

2w2
0(1 + z2/L2

R)(1 + z2/L2
d)

]︃
× exp

[︃
−

(r2
1 + r2

2)

4σ2
c (1 + z2/L2

d)

]︃
Im

[︃
r1r2

2σ2
c (1 + z2/L2

d)

]︃
.

(12)

Here LR = k0w2
0 is a Rayleigh range associated with the envelope

width w0 and Ld = k0σcw0 is a characteristic diffraction length
of a PCV, which justifies our interpretation of σeff immediately
following Eq. (8). Notice that in the chosen parameter regime,
Ld ≪ LR.

A few instructive observations are in order at this point. First,
it follows from Eq. (12) that the PCV field structure is invariant
on free-space propagation, making PCVs a subclass of a larger
class of vortex preserving partially coherent fields whose gen-
eral theory was developed in [28]. Second, the spatial intensity
distribution of the PCV, which we display in Fig. 1(b), is nearly
diffraction free in the chosen parameter regime. At first glance,
one might find this result surprising as the cross-spectral density
of Eq. (12) is not of the form of a bump/dip atop of a statisti-
cally uniform background which would guarantee propagation
invariance in general [29]. However, we can show that provided
σc ≪ w0, the source cross-spectral density can be approximated,
apart from a helical phase factor, by a product of a very wide
Gaussian envelope and a uniform Gaussian correlation function
of width σc. It follows that over distances of the order of Ld ∼ 1
km, the field generated by such a source outside of the vortex
core region behaves as a partially coherent plane wave, which is
essentially immune to diffraction. We note also that the depen-
dence of the diffraction length of PCVs on the product of their
coherence width and soft aperture size is typical of enveloped
diffraction-free random beams [30].
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Fig. 2. Evolution of the magnitude and phase (hue) of the DOC of
a PCV, given by Eq. (14), with the propagation distance. The source
parameters are w0 = 10 cm, σc = 1 mm, r0 = 2 cm, and λ0 = 532
nm.

Next, the DOC of a PCV in any transverse plane is defined as

µ(r1, r2, z) =
W(r1, r2, z)√︁

W(r1, r1, z)W(r2, r2, z)
. (13)

It follows at once from Eqs. (12) and (13) that

µexact(r, r0, z) =
Im

[︂
rr0

2σ2
c (1+z2/L2

d )

]︂
eim(φ−φ0)√︃

Im

[︂
r2

2σ2
c (1+z2/L2

d )

]︂
Im

[︂
r2
0

2σ2
c (1+z2/L2

d )

]︂ . (14)

We exhibit the DOC evolution, obeying Eq. (14), over a
kilometer-long distance in free space in Fig. 2; we show both
the magnitude and phase evolution with z choosing the same
parameters as before and the reference point to be at r0 = 2 cm.
We can infer from the figure that both the DOC magnitude and
phase, shown with hue, remain nearly intact, thereby attesting
to PCV robustness to diffraction.

We now derive a simple and elegant approximate expression
for the PCV DOC, which is valid in any transverse plane z ≥ 0,
and demonstrate its accuracy. To this end, we infer from Eq. (12)
that provided z ≲ Ld, the vortex ring of the DOC remains narrow
enough so that by approximating the modified Bessel function
with an exponential, we obtain in dimensionless variables the
expression

µ(r, r0, z) ≃ eim(φ−φ0) exp
[︃
−
(r − r0)

2

4δ2(z)

]︃
, (15)

where
δ(z) = δ0

√︂
1 + z2/L2

d, (16)

is a width of the PCV ring at a distance z; Eq. (15) indicates that
the PCV remains statistically homogeneous within the paraxial
propagation regime. Equations (15) and (16) are the key result
of this work; they provide a universal, as expressed in dimen-
sionless variables, and application friendly description of field
correlations of an ideal PCV. To verify the accuracy of this
approximation, we display the magnitude of the DOC obtained
with the aid of Eq. (14) and that given by the approximate equa-
tion, Eq. (15) in Fig. 3. The top two rows juxtapose the exact
and approximate |µ| for a moderate value of the TC m = 3,
while the bottom two rows do the same for large m, m = 180.

Fig. 3. Comparing the magnitude of DOC evolution obtained
from the exact expression, Eq. (14) and the corresponding Gaussian
approximation, Eq. (15) with z over a kilometer-long stretch of free
space. The source parameters are w0 = 10 cm, σc = 1 mm, r0 = 2
cm, and λ0 = 532 nm.

We can readily infer from the figure that there is an excellent
agreement between the exact and approximate expressions for
|µ| with moderate TCs. We also observe in the figure that as
the magnitude of the TC increases, the ring radius, but not the
circular shape, starts deviating from that of the ideal PCV; the
deviation becomes progressively noticeable as the PCV propa-
gates farther away from the source. To assess the discrepancy
quantitatively, we evaluate the (dimensionless) rms width ∆m of
the PCV field correlations which we define by the expression

∆
2
m(z) =

∫ ∞

0
dr

∫ ∞

0
dr0 |µexact(r, r0)|

2(r − r0)
2∫ ∞

0
dr

∫ ∞

0
dr0 |µexact(r, r0)|

2
, (17)

where we employed the exact DOC given by Eq. (14) and
expressed in dimensionless variables. In Fig. 4, we compare
thus defined ∆m with δ, evaluated at the source for variable
topological charge m. We also display δ and ∆m for m = 5 as
functions of the propagation distance z. It follows from Fig. 4(a)
that the correlation width does increase with m and the ideal
PCV expression, Eq. (16), yields an appreciable error, around
30% for m corresponding to a double digit number. At the same
time, Fig. 4 (b) attests to the fact that the magnitudes of ∆m and
δ remain quite close over substantial distances as long as m is
not too large.

Finally, we demonstrate that the vortex ring structure of the
discovered PCVs can be robust even against strong atmospheric
turbulence, at least, over relatively short distances. To this end,
we display in Fig. 5 the results of our numerical simulations
for the evolution of the magnitude of the DOC of the PCV field
through atmospheric turbulence with the structure constant such
that C2

n = 10−13 m−2/3, which allows us to classify such turbu-
lence as strong [31]. We employ a random phase screen method;
the details of our numerical procedure can be found in [32].
We infer from the figure that, remarkably, the main correlation
ring of the PCV with m = 1,−2, 3, which we have considered
here, survives the turbulence rather well; similar results hold for
PCVs with other TCs. At the same time, the contrast between the
dark areas inside and outside the vortex ring on the one hand,
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Fig. 4. Comparison of the widths of an ideal PCV ring δ with
that determined from the rms width of the exact DOC profile ∆m.
Left: ∆m and δ as functions of m at z = 500 m. Right: δ and ∆m as
functions of the propagation distance z for m = 5.

Fig. 5. Evolution of the magnitude of PCV DOC through a 150 m
long stretch of the turbulence atmosphere with the structure constant
Cn, C2

n = 10−13 m−2/3. The source parameters are w0 = 10 cm, σc =

1 mm, and λ0 = 532 nm. The reference point corresponds to r0 = 2
cm and ϕ0 = 0.

and the bright area within the ring on the other hand, dimin-
ishes due to turbulence. We note, though, that the additional
pseudo-rings, visible in all panels, are an artifact of our using a
MATLAB random number generator. We also verified numeri-
cally that the orbital angular momentum spectrum of any PCV
in Fig. 5 is sharply peaked around the corresponding topologi-
cal charge over the entire propagation stretch. Finally, we notice
that the axial symmetry of the magnitude of the source DOC
breaks down on PCV propagation through atmospheric turbu-
lence which becomes evident if we compare panels at z = 0 with
those at z = 75 m, or z = 150 m. The resilience of the PCV ring
to atmospheric turbulence is most consequential for the PCV
potential for free-space optical communications.

In conclusion, we have introduced a class of random vortices,
perfect correlation vortices, with the DOC at the source man-
ifesting a thin ring of the radius and thickness independent of
the topological charge of the vortex. The discovered PCVs are
nearly statistically homogeneous across the source and remain
so on paraxial propagation in free space. Thus, unlike their fully
coherent counterparts, PCVs can maintain their vortex struc-
ture in free space essentially indefinitely. In addition, PCVs are
resilient to even strong atmospheric turbulence, albeit over suffi-

ciently short distances. We have derived an elegant, closed-form
analytical expression for the degree of coherence of a perfect
correlation vortex in any transverse plane. We anticipate the dis-
covered vortices to facilitate free-space optical communications,
among other potential applications.
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